5 years ago

Rapid compressed sensing reconstruction of 3D non-Cartesian MRI

John M. Pauly, Nicholas Dwork, Dwight G. Nishimura, Corey A. Baron
Purpose Conventional non-Cartesian compressed sensing requires multiple nonuniform Fourier transforms every iteration, which is computationally expensive. Accordingly, time-consuming reconstructions have slowed the adoption of undersampled 3D non-Cartesian acquisitions into clinical protocols. In this work we investigate several approaches to minimize reconstruction times without sacrificing accuracy. Methods The reconstruction problem can be reformatted to exploit the Toeplitz structure of matrices that are evaluated every iteration, but it requires larger oversampling than what is strictly required by nonuniform Fourier transforms. Accordingly, we investigate relative speeds of the two approaches for various nonuniform Fourier transform kernel sizes and oversampling for both GPU and CPU implementations. Second, we introduce a method to minimize matrix sizes by estimating the image support. Finally, density compensation weights have been used as a preconditioning matrix to improve convergence, but this increases noise. We propose a more general approach to preconditioning that allows a trade-off between accuracy and convergence speed. Results When using a GPU, the Toeplitz approach was faster for all practical parameters. Second, it was found that properly accounting for image support can prevent aliasing errors with minimal impact on reconstruction time. Third, the proposed preconditioning scheme improved convergence rates by an order of magnitude with negligible impact on noise. Conclusion With the proposed methods, 3D non-Cartesian compressed sensing with clinically relevant reconstruction times (<2 min) is feasible using practical computer resources. Magn Reson Med, 2017. © 2017 International Society for Magnetic Resonance in Medicine.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/mrm.26928

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.