3 years ago

Defective glucocorticoid receptor signaling and keratinocyte-autonomous defects contribute to skin phenotype of mouse embryos lacking the Hsp90 co-chaperone p23

Paloma Pérez, Iwona Grad, Pilar Bayo, Marta Madon-Simon, Didier Picard

by Marta Madon-Simon, Iwona Grad, Pilar Bayo, Paloma Pérez, Didier Picard

p23 is a small acidic protein with intrinsic molecular chaperone activity. It is best known as a co-chaperone of the major cytosolic molecular chaperone Hsp90. p23 binds the N-terminus of Hsp90 and stabilizes the ATP-bound and N-terminally closed Hsp90 dimer. It is in this configuration that many Hsp90 clients are most stably bound. Considering the important role of p23 in the Hsp90 cycle, it came as a surprise that it is not absolutely essential for viability in the budding yeast or for mouse development. Mice without p23 develop quite normally until birth and then all die perinatally because of immature lungs. The only other apparent phenotype of late stage embryos and newborns is a skin defect, which we have further characterized here. We found that skin differentiation is impaired, and that both apoptosis and cell proliferation are augmented in the absence of p23; the consequences are a severe thinning of the stratum corneum and reduced numbers of hair follicles. The altered differentiation, spontaneous apoptosis and proliferation are all mimicked by isolated primary keratinocytes indicating that they do require p23 functions in a cell-autonomous fashion. Since the phenotype of p23-null embryos is strikingly similar to that of embryos lacking the glucocorticoid receptor, a paradigmatic Hsp90-p23 client protein, we investigated glucocorticoid signaling. We discovered that it is impaired in vivo and for some aspects in isolated keratinocytes. Our results suggest that part of the phenotype of p23-null embryos can be explained by an impact on this particular Hsp90 client, but do not exclude that p23 by itself or in association with Hsp90 affects skin development and homeostasis through yet other pathways.

Publisher URL: http://journals.plos.org/plosone/article

DOI: 10.1371/journal.pone.0180035

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.