# New Distributed Algorithms in Almost Mixing Time via Transformations from Parallel Algorithms.

We show that many classical optimization problems --- such as $(1\pm\epsilon)$-approximate maximum flow, shortest path, and transshipment --- can be computed in $\newcommand{\tmix}{{\tau_{\text{mix}}}}\tmix(G)\cdot n^{o(1)}$ rounds of distributed message passing, where $\tmix(G)$ is the mixing time of the network graph $G$. This extends the result of Ghaffari et al.\ [PODC'17], whose main result is a distributed MST algorithm in $\tmix(G)\cdot 2^{O(\sqrt{\log n \log\log n})}$ rounds in the CONGEST model, to a much wider class of optimization problems. For many practical networks of interest, e.g., peer-to-peer or overlay network structures, the mixing time $\tmix(G)$ is small, e.g., polylogarithmic. On these networks, our algorithms bypass the $\tilde\Omega(\sqrt n+D)$ lower bound of Das Sarma et al.\ [STOC'11], which applies for worst-case graphs and applies to all of the above optimization problems. For all of the problems except MST, this is the first distributed algorithm which takes $o(\sqrt n)$ rounds on a (nontrivial) restricted class of network graphs.

Towards deriving these improved distributed algorithms, our main contribution is a general transformation that simulates any work-efficient PRAM algorithm running in $T$ parallel rounds via a distributed algorithm running in $T\cdot \tmix(G)\cdot 2^{O(\sqrt{\log n})}$ rounds. Work- and time-efficient parallel algorithms for all of the aforementioned problems follow by combining the work of Sherman [FOCS'13, SODA'17] and Peng and Spielman [STOC'14]. Thus, simulating these parallel algorithms using our transformation framework produces the desired distributed algorithms.

The core technical component of our transformation is the algorithmic problem of solving \emph{multi-commodity routing}---that is, roughly, routing $n$ packets each from a given source to a given destination---in random graphs. For this problem, we obtain a...

Publisher URL: http://arxiv.org/abs/1805.04764

DOI: arXiv:1805.04764v1

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

Researcher displays publicly available abstracts and doesnâ€™t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.