5 years ago

Development of terphenyl-2-methyloxazol-5(4H)-one derivatives as selective reversible MAGL inhibitors.

Poli G, Bertelli E, Tuccinardi T, Granchi C, Minutolo F, Martinelli A, Rizzolio F, Caligiuri I, Macchia M
Monoacylglycerol lipase is a serine hydrolase that plays a major role in the degradation of the endocannabinoid neurotransmitter 2-arachidonoylglycerol. A wide number of MAGL inhibitors are reported in literature; however, many of them are characterised by an irreversible mechanism of action and this behavior determines an unwanted chronic MAGL inactivation, which acquires a functional antagonism of the endocannabinoid system. The possible use of reversible MAGL inhibitors has only recently been explored, due to the lack of known compounds possessing efficient reversible inhibitory activities. In this work, we report a new series of terphenyl-2-methyloxazol-5(4H)-one derivatives characterised by a reversible MAGL-inhibition mechanism. Among them, compound 20b showed to be a potent MAGL reversible inhibitor (IC50 = 348 nM) with a good MAGL/FAAH selectivity. Furthermore, this compound showed antiproliferative activities against two different cancer cell lines that overexpress MAGL.

Publisher URL: https://www.ncbi.nlm.nih.gov/pubmed/28936880

DOI: PubMed:28936880

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.