3 years ago

Galectin-3: A Positive Regulator of Leukocyte Recruitment in the Inflamed Microcirculation.

Cooper D, Bodkin JV, Perretti M, Nourshargh S, Gittens BR
In vivo and ex vivo imaging were used to investigate the function of galectin-3 (Gal-3) during the process of leukocyte recruitment to the inflamed microcirculation. The cremasteric microcirculation of wild-type (C57BL/6), Gal-3-/-, and CX3CR1gfp/+ mice were assessed by intravital microscopy after PBS, IL-1β, TNF-α, or recombinant Gal-3 treatment. These cellular responses were investigated further using flow-chamber assays, confocal microscopy, flow cytometry, PCR analysis, and proteome array. We show that mechanisms mediating leukocyte slow rolling and emigration are impaired in Gal-3-/- mice, which could be because of impaired expression of cell adhesion molecules and an altered cell surface glycoproteome. Local (intrascrotal) administration of recombinant Gal-3 to wild-type mice resulted in a dose-dependent reduction in rolling velocity associated with increased numbers of adherent and emigrated leukocytes, ∼50% of which were Ly6G+ neutrophils. Intrascrotal administration of Gal-3 to CX3CR1gfp/+ mice confirmed that approximately equal numbers of monocytes are also recruited in response to this lectin. Exogenous Gal-3 treatment was accompanied by increased proinflammatory cytokines and chemokines within the local tissue. In conclusion, this study unveils novel biology for both exogenous and endogenous Gal-3 in promoting leukocyte recruitment during acute inflammation.

Publisher URL: https://www.ncbi.nlm.nih.gov/pubmed/28438899

DOI: PubMed:28438899

You might also like
Never Miss Important Research

Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.