5 years ago

Reaction Progress Kinetics Analysis of 1,3-Disiloxanediols as Hydrogen-Bonding Catalysts

Reaction Progress Kinetics Analysis of 1,3-Disiloxanediols as Hydrogen-Bonding Catalysts
Sean O. Wilson, Annaliese K. Franz, Jason E. Hein, Kayla M. Diemoz, James C. Fettinger
1,3-Disiloxanediols are effective hydrogen-bonding catalysts that exhibit enhanced activity relative to silanediols and triarylsilanols. The catalytic activity for a series of 1,3-disiloxanediols, including naphthyl-substituted and unsymmetrical siloxanes, has been quantified and compared relative to other silanol and thiourea catalysts using the Friedel Crafts addition of indole to trans-β-nitrostyrene. An in-depth kinetic study using reaction progress kinetic analysis (RPKA) has been performed to probe the catalyst behavior of 1,3-disiloxanediols. The data confirm that the disiloxanediol-catalyzed addition reaction is first order in catalyst over all concentrations studied with no evidence of catalyst self-association. 1,3-Disiloxanediols proved to be robust and recoverable catalysts with no deactivation under reaction conditions. No product inhibition is observed, and competitive binding studies with nitro-containing additives suggest that 1,3-disiloxanediols bind weakly to nitro groups but are strongly activating for catalysis.

Publisher URL: http://dx.doi.org/10.1021/acs.joc.7b00875

DOI: 10.1021/acs.joc.7b00875

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.