3 years ago

Transition-metal coordinate bonds for bioinspired macromolecules with tunable mechanical properties

Transition-metal coordinate bonds for bioinspired macromolecules with tunable mechanical properties
Eesha Khare, Niels Holten-Andersen, Markus J. Buehler
Transition-metal coordination complexes are emerging as a broad class of supramolecular crosslinks that can be used to engineer the mechanical properties of advanced structural materials. Unlike conventional covalent bonds, metal-coordination bonds have the capacity to reform after rupture, thereby enabling dynamic, tunable and reversible (self-healing) mechanical properties. Several biological organisms, such as marine mussels, have been found to take advantage of these unique properties of metal-coordinate complexes in the assembly of load-bearing materials for complex extraorganismal functions. Accordingly, efforts to integrate metal-coordinate crosslinking in bioinspired synthetic protein and polymer hydrogels are an increasingly active area of research. However, a deeper understanding of how metal-coordination bonds affect bulk mechanical properties is still missing, rendering predicting the mechanical properties of metal-coordinated materials challenging. In this Review, we survey recent advances and open questions in our understanding of how chemical properties of metal-coordinate complexes influence multiscale mechanical behaviour, with the aim of presenting metal-coordination bonding as a rich, inorganic crosslinking chemistry tool. We also review applications of metal-coordinate crosslinking in the design of novel materials with tunable mechanical properties, ranging from tough gels to soft robots. These applications highlight the opportunities arising from the integration of this class of load-bearing crosslinks in structural materials design.
You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.