3 years ago

Overexpression of MiR-335-5p Promotes Bone Formation and Regeneration in Mice

Michel M Dard, Liming Yu, Qisheng Tu, Paloma Valverde, Qianqian Han, Jake Chen, Xiaofang Zhu, Lei Sui, Jean Tang, Leilei Zheng, Tianchi Tu, Hicham Drissi, Yin Tang, Xuedong Zhou, Shu Meng, Lan Zhang, Dana Murray
MicroRNAs (miRNAs) and the Wnt signaling pathway play critical roles in regulating bone development and homeostasis. Our previous study revealed high expression of miR-335-5p in osteoblasts and hypertrophic chondrocytes in mouse embryos and the ability of miR-335-5p to promote osteogenic differentiation by downregulating Wnt antagonist Dickkopf-1 (DKK1). The purpose of this study was to investigate the effects of miR-335-5p constitutive overexpression on bone formation and regeneration in vivo. To that end, we generated a transgenic mouse line specifically overexpressing miR-335-5p in osteoblasts lineage by the osterix promoter and characterized its bone phenotype. Bone histomorphometry and μCT analysis revealed higher bone mass and increased parameters of bone formation in transgenic mice than in wild-type littermates. Increased bone mass in transgenic mice bones also correlated with enhanced expression of osteogenic differentiation markers. Upon osteogenic induction, bone marrow stromal cells (BMSCs) isolated from transgenic mice displayed higher mRNA expression of osteogenic markers than wild-type mice BMSCs cultures. Protein expression of Runx2 and Osx was also upregulated in BMSC cultures of transgenic mice upon osteogenic induction, whereas that of DKK1 was downregulated. Most important, BMSCs from transgenic mice were able to repair craniofacial bone defects as shown by μCT analysis, H&E staining, and osteocalcin (OCN) immunohistochemistry of newly formed bone in defects treated with BMSCs. Taken together, our results demonstrate constitutive overexpression of miR-335-5p driven by an osterix promoter in the osteoblast lineage induces osteogenic differentiation and bone formation in mice and support the potential application of miR-335-5p–modified BMSCs in craniofacial bone regeneration. © 2017 American Society for Bone and Mineral Research.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/jbmr.3230

You might also like
Never Miss Important Research

Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.