3 years ago

Middle cranial fossa approach to repair tegmen defects assisted by three-dimensionally printed temporal bone models

H. Alexander Arts, Stephanie Kline, Sameer Ahmed, Glenn E. Green, Kyle K. VanKoevering
Objectives/Hypothesis To explore the perioperative utility of three-dimensionally (3D)-printed temporal bone models of patients undergoing repair of lateral skull base defects and spontaneous cerebrospinal fluid leaks with the middle cranial fossa approach. Study Design Case series. Methods 3D-printed temporal bone models—based on patient-specific, high-resolution computed tomographic imaging—were constructed using inexpensive polymer materials. Preoperatively, the models demonstrated the extent of temporal lobe retraction necessary to visualize the proposed defects in the lateral skull base. Also preoperatively, Silastic sheeting was arranged across the modeled tegmen, marked, and cut to cover all of the proposed defect sites. The Silastic sheeting was then sterilized and subsequently served as a precise intraoperative template for a synthetic dural replacement graft. Of note, these grafts were customized without needing to retract the temporal lobe. Results Five patients underwent the middle cranial fossa approach assisted by 3D-printed temporal bone models to repair tegmen defects and spontaneous cerebrospinal fluid leaks. No complications were encountered. The prefabricated dural repair grafts were easily placed and fit precisely onto the middle fossa floor without any additional modifications. All defects were covered as predicted by the 3D temporal bone models. At their postoperative visits, all five patients maintained resolution of their spontaneous cerebrospinal fluid leaks. Conclusions Inexpensive 3D-printed temporal bone models of tegmen defects can serve as beneficial adjuncts during lateral skull base repair. The models provide a panoramic preoperative view of all tegmen defects and allow for custom templating of dural grafts without temporal lobe retraction. Level of Evidence 4 Laryngoscope, 127:2347–2351, 2017

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/lary.26438

You might also like
Never Miss Important Research

Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.