5 years ago

Fluorescent Neuraminidase Assay Based on Supramolecular Dye Capture After Enzymatic Cleavage

Fluorescent Neuraminidase Assay Based on Supramolecular Dye Capture After Enzymatic Cleavage
César F. A. Gómez-Durán, Wenqi Liu, Bradley D. Smith
A conceptually new type of enzymatic cleavage assay is reported that utilizes in situ supramolecular capture of the fluorescent product. A squaraine-derived substrate with large blocking groups at each end of its structure cannot be threaded by a tetralactam macrocycle until the blocking groups are removed by enzyme cleavage. A prototype design responds to viral neuraminidase, an indicator of influenza infection, and also measures susceptibility of the sample to neuraminidase inhibitor drugs. The substrate structure incorporates three key features: (a) a bis(4-amino-3-hydroxyphenyl)squaraine core with bright deep-red fluorescence and excellent photostability, (b) an N-methyl group at each end of the squaraine core that ensures fast macrocycle threading kinetics, and (c) sialic acid blocking groups that prevent macrocycle threading until they are removed by viral neuraminidase. The enzyme assay can be conducted in aqueous solution where dramatic colorimetric and fluorescence changes are easily observed by the naked eye. Alternatively, affinity capture beads coated with macrocycle can be used to immobilize the liberated squaraine and enable a range of heterogeneous analysis options. With further optimization, this new type of neuraminidase assay may be useful in a point of care clinic to rapidly diagnose influenza infection and also determine which of the approved antiviral inhibitor drugs is likely to be the most effective treatment for an individual patient. The assay design is generalizable and can be readily modified to monitor virtually any type of enzyme-catalyzed cleavage reaction.

Publisher URL: http://dx.doi.org/10.1021/jacs.7b01628

DOI: 10.1021/jacs.7b01628

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.