3 years ago

Development of a forecasting model for brucellosis spreading in the Italian cattle trade network aimed to prioritise the field interventions

L. Candeloro, A. Conte, A. Giovannini, F. De Massis, L. Savini

by L. Savini, L. Candeloro, A. Conte, F. De Massis, A. Giovannini

Brucellosis caused by Brucella abortus is an important zoonosis that constitutes a serious hazard to public health. Prevention of human brucellosis depends on the control of the disease in animals. Livestock movement data represent a valuable source of information to understand the pattern of contacts between holdings, which may determine the inter-herds and intra-herd spread of the disease. The manuscript addresses the use of computational epidemic models rooted in the knowledge of cattle trade network to assess the probabilities of brucellosis spread and to design control strategies. Three different spread network-based models were proposed: the DFC (Disease Flow Centrality) model based only on temporal cattle network structure and unrelated to the epidemiological disease parameters; a deterministic SIR (Susceptible-Infectious-Recovered) model; a stochastic SEIR (Susceptible-Exposed-Infectious-Recovered) model in which epidemiological and demographic within-farm aspects were also modelled. Containment strategies based on farms centrality in the cattle network were tested and discussed. All three models started from the identification of the entire sub-network originated from an infected farm, up to the fifth order of contacts. Their performances were based on data collected in Sicily in the framework of the national eradication plan of brucellosis in 2009. Results show that the proposed methods improves the efficacy and efficiency of the tracing activities in comparison to the procedure currently adopted by the veterinary services in the brucellosis control, in Italy. An overall assessment shows that the SIR model is the most suitable for the practical needs of the veterinary services, being the one with the highest sensitivity and the shortest computation time.

Publisher URL: http://journals.plos.org/plosone/article

DOI: 10.1371/journal.pone.0177313

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.