3 years ago

Core–Shell Au@Metal-Oxide Nanoparticle Electrocatalysts for Enhanced Oxygen Evolution

Core–Shell Au@Metal-Oxide Nanoparticle Electrocatalysts for Enhanced Oxygen Evolution
Thomas F. Jaramillo, Marı́a Escudero-Escribano, Alaina L. Strickler
Enhanced catalysis for electrochemical oxygen evolution is essential for the efficacy of many renewable energy technologies, including water electrolyzers and metal–air batteries. Recently, Au supports have been shown to enhance the activity of many 3d transition metal-oxide thin films for the oxygen evolution reaction (OER) in alkaline media. Herein, we translate the beneficial impact of Au supports to high surface area, device-ready core–shell nanoparticles consisting of a Au-core and a metal-oxide shell (Au@MxOy where M = Ni, Co, Fe, and CoFe). Through a systematic evaluation, we establish trends in performance and illustrate the universal activity enhancement when employing the Au-core in the 3d transition metal-oxide nanoparticles. The highest activity particles, Au@CoFeOx, demonstrate an overpotential of 328 ± 3 mV over a 2 h stability test at 10 mA cm–2, illustrating that strategically coupling Au support and mixed metal-oxide effects in a core–shell nanoparticle morphology is a promising avenue to achieve device-ready, high-performance OER catalysts.

Publisher URL: http://dx.doi.org/10.1021/acs.nanolett.7b02357

DOI: 10.1021/acs.nanolett.7b02357

You might also like
Never Miss Important Research

Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.