3 years ago

Glycoforest 1.0

Glycoforest 1.0
Davide Alocci, Chunsheng Jin, Frederique Lisacek, Julien Mariethoz, Niclas G. Karlsson, Markus Müller, Oliver Horlacher
Tandem mass spectrometry, when combined with liquid chromatography and applied to complex mixtures, produces large amounts of raw data, which needs to be analyzed to identify molecular structures. This technique is widely used, particularly in glycomics. Due to a lack of high throughput glycan sequencing software, glycan spectra are predominantly sequenced manually. A challenge for writing glycan-sequencing software is that there is no direct template that can be used to infer structures detectable in an organism. To help alleviate this bottleneck, we present Glycoforest 1.0, a partial de novo algorithm for sequencing glycan structures based on MS/MS spectra. Glycoforest was tested on two data sets (human gastric and salmon mucosa O-linked glycomes) for which MS/MS spectra were annotated manually. Glycoforest generated the human validated structure for 92% of test cases. The correct structure was found as the best scoring match for 70% and among the top 3 matches for 83% of test cases. In addition, the Glycoforest algorithm detected glycan structures from MS/MS spectra missing a manual annotation. In total 1532 MS/MS previously unannotated spectra were annotated by Glycoforest. A portion containing 521 spectra was manually checked confirming that Glycoforest annotated an additional 50 MS/MS spectra overlooked during manual annotation.

Publisher URL: http://dx.doi.org/10.1021/acs.analchem.7b02754

DOI: 10.1021/acs.analchem.7b02754

You might also like
Never Miss Important Research

Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.