5 years ago

Twist of a Silicon–Silicon Double Bond: Selective Anti-Addition of Hydrogen to an Iminodisilene

Twist of a Silicon–Silicon Double Bond: Selective Anti-Addition of Hydrogen to an Iminodisilene
Christian Jandl, Tibor Szilvási, Bernhard Rieger, Shigeyoshi Inoue, Daniel Wendel
Hydrogenation of alkenes with C═C bonds is a ubiquitous reaction in organic chemistry. However, this transformation remains unknown for heavier counterparts, disilenes with Si═Si bonds. Here we report the isolation of (Z)-diiminodisilyldisilene 2 featuring a highly trans-bent and twisted structure and the longest silicon–silicon double bond reported to date. In silico studies suggested that the Si═Si bond in 2 is described as very weak double donor–acceptor bond. We utilized the remarkable electronic and structural features of this product to achieve the first demonstration of hydrogen activation by a multiply bonded silicon compound under ambient conditions. Interestingly, NMR and X-ray analysis gave exclusively racemic (RR/SS)-1,2-disilane 3a, indicating a stereospecific trans-hydrogenation of the Si═Si bond. In-depth calculations revealed that in strong contrast to the reactivity of C═C bonds, a concerted anti-addition pathway was favored due to the twisted structure of 2.

Publisher URL: http://dx.doi.org/10.1021/jacs.7b05335

DOI: 10.1021/jacs.7b05335

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.