3 years ago

Optimal Tuning of Range-Separated Hybrids for Solvated Molecules with Time-Dependent Density Functional Theory

Optimal Tuning of Range-Separated Hybrids for Solvated Molecules with Time-Dependent Density Functional Theory
Martina Rubešová, Petr Slavíček, Eva Muchová
The applicability range of density functional theory (DFT) can be improved with no additional parametrization by imposing some exact conditions. Enforcing equality between the orbital energy of the highest occupied Kohn–Sham orbital and ionization energy, determined from the total energy difference between neutral and ionized states (ΔKS), leads to the concept of optimally tuned range-separated hybrid functionals. Here, we present an alternative tuning scheme for range-separated hybrid functionals based on enforcing the equality between the ΔKS ionization energy and the ionization energy calculated by means of the time-dependent DFT using the concept of ionization as an excitation to the distant center (OT-IEDC scheme). The scheme can be naturally applied to solvated systems described either within the explicit solvation or dielectric continuum models. We test the performance of the scheme on a benchmark set of molecules. We further show that the scheme allows for reliably modeling liquid phase photoemission spectra.

Publisher URL: http://dx.doi.org/10.1021/acs.jctc.7b00675

DOI: 10.1021/acs.jctc.7b00675

You might also like
Never Miss Important Research

Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.