5 years ago

Protein Phosphatase Inhibitor-1 Gene Therapy in a Swine Model of Nonischemic Heart Failure

Protein Phosphatase Inhibitor-1 Gene Therapy in a Swine Model of Nonischemic Heart Failure
Increased protein phosphatase-1 in heart failure (HF) induces molecular changes deleterious to the cardiac cell. Inhibiting protein phosphatase-1 through the overexpression of a constitutively active inhibitor-1 (I-1c) has been shown to reverse cardiac dysfunction in a model of ischemic HF. Objectives This study sought to determine the therapeutic efficacy of a re-engineered adenoassociated viral vector carrying I-1c (BNP116.I-1c) in a preclinical model of nonischemic HF, and to assess thoroughly the safety of BNP116.I-1c gene therapy. Methods Volume-overload HF was created in Yorkshire swine by inducing severe mitral regurgitation. One month after mitral regurgitation induction, pigs were randomized to intracoronary delivery of either BNP116.I-1c (n = 6) or saline (n = 7). Therapeutic efficacy and safety were evaluated 2 months after gene delivery. Additionally, 24 naive pigs received different doses of BNP116.I-1c for safety evaluation. Results At 1 month after mitral regurgitation induction, pigs developed HF as evidenced by increased left ventricular end-diastolic pressure and left ventricular volume indexes. Treatment with BNP116.I-1c resulted in improved left ventricular ejection fraction (−5.9 ± 4.2% vs. 5.5 ± 4.0%; p < 0.001) and adjusted dP/dt maximum (−3.39 ± 2.44 s-1 vs. 1.30 ± 2.39 s-1; p = 0.007). Moreover, BNP116.I-1c-treated pigs also exhibited a significant increase in left atrial ejection fraction at 2 months after gene delivery (−4.3 ± 3.1% vs. 7.5 ± 3.1%; p = 0.02). In vitro I-1c gene transfer in isolated left atrial myocytes from both pigs and rats increased calcium transient amplitude, consistent with its positive impact on left atrial contraction. We found no evidence of adverse electrical remodeling, arrhythmogenicity, activation of a cellular immune response, or off-target organ damage by BNP116.I-1c gene therapy in pigs. Conclusions Intracoronary delivery of BNP116.I-1c was safe and improved contractility of the left ventricle and atrium in a large animal model of nonischemic HF.

Publisher URL: www.sciencedirect.com/science

DOI: S0735109717392525

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.