3 years ago

Stereographic measurement of orbital volume, a digital reproducible evaluation method


Up to date, no standardised reproducible orbital volume measurement method is available. Therefore, this study aimed to investigate the accuracy of a new measurement method, which delineates the boundaries of orbital cavity three-dimensionally (3D).


In order to calculate the orbital volume from axial CT slice images of the patients, using our first described measurement method, the segmentation of the orbital cavity and the bony skull was performed using Amira 3D Analysis Software. The files were then imported into the Blender program. The stereographic skull model was aligned based on the Frankfurt horizontal plane and superposed according to defined anatomical reference points. The anterior sectional plane ran through the most posterior section of the lacrimal fossa and the farthest dorsal point of the anterior latero-orbital margin, which is positioned perpendicular to the Frankfurt horizontal plane. The volume of each orbital cavity was then determined automatically by the Blender program.


The 10 consecutive subjects (5 female, 5 male) with mean age of 50.3±21.3 years were considered for analysis in the current study. The first investigator reported a mean orbital volume of 20.24±1.01 cm3 in the first and 20.25±1.03 cm3 in the second evaluation. Furthermore, the intraclass correlation coefficient (ICC) showed an excellent intrarater agreement (ICC=0.997). Additionally, the second investigator detected a mean orbital volume of 20.20±1.08 cm3 in his assessment, in which an excellent inter-rater agreement was found in ICC (ICC=0.994).


This method provides a standardised and reproducible 3D approach to the measurement of the orbital volume.

Publisher URL: http://bjo.bmj.com/cgi/content/short/101/10/1431

DOI: 10.1136/bjophthalmol-2016-309998

You might also like
Never Miss Important Research

Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.