3 years ago

Identification of mesomeric substructures by through-space NMR shieldings (TSNMRS). Trimethine cyanine/merocyanine-like or aromatic π-electron delocalization?

Identification of mesomeric substructures by through-space NMR shieldings (TSNMRS). Trimethine cyanine/merocyanine-like or aromatic π-electron delocalization?
The spatial magnetic properties, through-space NMR shieldings (TSNMRS), of amino-substituted heteroaromatic six-membered ring systems such as pyrylium/thiopyrylium analogues have been calculated using the GIAO perturbation method employing the nucleus independent chemical shift (NICS) concept and visualized as iso-chemical-shielding surfaces (ICSS) of various size and direction. The TSNMRS values were employed to quantify and visualize the existing aromaticity of the studied compounds. Due to strong conjugation of six-membered ring π-electrons and lone pairs of the exo-cyclic amino substituents (restricted rotation about partial C,N double bonds) the interplay of still aromatic and already dominating trimethine cyanine/merocyanine-like substructures can be estimated.

Publisher URL: www.sciencedirect.com/science

DOI: S0040402017305483

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.