3 years ago

An analytical theory of CEP-dependent coherence driven by few-cycle pulses. (arXiv:2101.04881v3 [quant-ph] UPDATED)

Bing Zeng, Lingze Duan
The interaction between an atomic system and a few-cycle ultrafast pulse carries rich physics and a considerable application prospect in quantum-coherence control. However, theoretical understanding of its general behaviors has been hindered by the lack of an analytical description in this regime, especially with regard to the impact of the carrier-envelope phase (CEP). Here, we present an analytical theory that describes a two-level atom driven by a far-off-resonance, few-cycle square pulse. A simple, closed-form solution of the Schrodinger equation is obtained under the first-order perturbation without invoking the rotating-wave approximation or the slowly varying envelope approximation. Further investigation reveals an arithmetic relation between the final inversion of the atom and the CEP of the pulse. Despite its mathematical simplicity, the relation is able to capture some of the key features of the interaction, which prove to be robust against generalization of pulse shapes and show good agreements with numerical solutions. The theory can potentially offer a general guidance in future studies of CEP-sensitive quantum coherence.

Publisher URL: http://arxiv.org/abs/2101.04881

DOI: arXiv:2101.04881v3

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.