3 years ago

The participation of fibroblast growth factor 23 (FGF23)in the progression of osteoporosis via JAK/STAT pathway

Huijuan Zhang, Lixia Zhang, Zaigang Yang, Lijun Xu, Yurong Wang, Lei Qi, Shuxin Ren
Osteoporosis (OP) is a major skeletal disorder for the old man. The fibroblast growth factor 23 (FGF23) is a phosphaturic hormone produced by osteoblasts and osteocytes. However, the regulatory mechanisms of FGF23 in the progression of osteoporosis remain poorly understood. This study aims to explore the downstream regulating pathway of FGF23 in postmenopausal osteoporosis. The rat model of osteoporosis was established through ovariectomy (OVX). The investigation demonstrated that the serum levels of FGF23 and the phosphorylation levels of JAK2, STAT1 and STAT3 were up-regulated in the OVX + NVP-BGJ398 group while were down-regulated in the OVX + Anti-FGF23 group than that in the OVX group. Moreover, the JAK2/ STAT1/3 inhibitor, AG490 promoted the OVX-induced increase in the osteocalcin, ALP, BALP, TRAP and CTX-I levels. Besides, AG490 enhanced cartilage lesions and increased TUNEL-positive chondrocytes in the OVX group. In addition, higher protein expression of MMP-1 and MMP-13 and lower expression of COX-II were observed in the OVX + AG490 group than that in the OVX group. Our findings suggested that FGF23 was involved in the progression of osteoporosis via the JAK/STAT signaling pathway. This article is protected by copyright. All rights reserved

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/jcb.26332

You might also like
Never Miss Important Research

Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.