Bayesian Lasso and multinomial logistic regression on GPU
by Rok Češnovar, Erik Štrumbelj
We describe an efficient Bayesian parallel GPU implementation of two classic statistical models—the Lasso and multinomial logistic regression. We focus on parallelizing the key components: matrix multiplication, matrix inversion, and sampling from the full conditionals. Our GPU implementations of Bayesian Lasso and multinomial logistic regression achieve 100-fold speedups on mid-level and high-end GPUs. Substantial speedups of 25 fold can also be achieved on older and lower end GPUs. Samplers are implemented in OpenCL and can be used on any type of GPU and other types of computational units, thereby being convenient and advantageous in practice compared to related work.Publisher URL: http://journals.plos.org/plosone/article
DOI: 10.1371/journal.pone.0180343
Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.
Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.