5 years ago

Direct Patterning of Zinc Sulfide on a Sub-10 Nanometer Scale via Electron Beam Lithography

Direct Patterning of Zinc Sulfide on a Sub-10 Nanometer Scale via Electron Beam Lithography
Ramakrishnan Ganesan, Asadullah Ibn Saifullah, Esther A. H. Ong, Maryam Binti-Kamran Kiyani, Mohamed Asbahi, Sudhiranjan Tripathy, Suresh Valiyaveettil, Tanmay Dutta, Mohammad S. M. Saifullah, Karen S. L. Chong, Hui Ru Tan
Nanostructures of metal sulfides are conventionally prepared via chemical techniques and patterned using self-assembly. This poses a considerable amount of challenge when arbitrary shapes and sizes of nanostructures are desired to be placed at precise locations. Here, we describe an alternative approach of nanoscale patterning of zinc sulfide (ZnS) directly using a spin-coatable and electron beam sensitive zinc butylxanthate resist without the lift-off or etching step. Time-resolved electron beam damage studies using micro-Raman and micro-FTIR spectroscopies suggest that exposure to a beam of electrons leads to quick disappearance of xanthate moieties most likely via the Chugaev elimination, and further increase of electron dose results in the appearance of ZnS, thereby making the exposed resist insoluble in organic solvents. Formation of ZnS nanocrystals was confirmed by high-resolution transmission electron microscopy and selected area electron diffraction. This property was exploited for the fabrication of ZnS lines as small as 6 nm and also enabled patterning of 10 nm dots with pitches as close as 22 nm. The ZnS patterns fabricated by this technique showed defect-induced photoluminescence related to sub-band-gap optical transitions. This method offers an easy way to generate an ensemble of functional ZnS nanostructures that can be arbitrarily patterned and placed in a precise way. Such an approach may enable programmable design of functional chalcogenide nanostructures.

Publisher URL: http://dx.doi.org/10.1021/acsnano.7b03951

DOI: 10.1021/acsnano.7b03951

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.