3 years ago

Direct Access to N-Unprotected α- and/or β-Tetrasubstituted Amino Acid Esters via Direct Catalytic Mannich-Type Reactions Using N-Unprotected Trifluoromethyl Ketimines

Direct Access to N-Unprotected α- and/or β-Tetrasubstituted Amino Acid Esters via Direct Catalytic Mannich-Type Reactions Using N-Unprotected Trifluoromethyl Ketimines
Masanao Sawa, Kazuhiro Morisaki, Yuta Kondo, Hiroyuki Morimoto, Takashi Ohshima
Direct catalytic C−C bond-forming addition to N-unprotected ketimines is an efficient and straightforward method of synthesizing N-unprotected tetrasubstituted amines that eliminates prior protection/deprotection steps and allows facile transformation of the products. Despite its advantages, however, N-unprotected ketimines have difficulties in C−C bond-forming reactions, and only a limited number of reactions and substrates are reported compared with their N-protected counterparts. Herein we report that N-unprotected trifluoromethyl ketimines are effective for C−C bond-forming reactions using Mannich-type reactions as a model case. We demonstrate that Lewis acid catalysis was effective for promoting reactions with various N-unprotected trifluoromethyl ketimines, and thiourea organocatalysis was effective for promoting highly enantioselective reactions with various carbonyl nucleophiles, providing direct access to various N-unprotected α- and/or β-tetrasubstituted amino acid esters. Furthermore, direct construction of vicinal tetrasubstituted chiral carbon stereocenters was achieved for the first time in a highly enantio- and diastereoselective manner. These results demonstrate the potential of N-unprotected ketimines as substrates applicable to many other addition reactions. Imine it this time: N-unprotected trifluoromethyl ketimines as effective electrophiles for direct catalytic Mannich-type reactions are reported. The first stereoselective construction of vicinal tetrasubstituted carbon stereocenters with N-unprotected ketimines is also presented.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/chem.201703516

You might also like
Never Miss Important Research

Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.