3 years ago

Low Thermal Conductivity and High Thermoelectric Performance in (GeTe)1–2x(GeSe)x(GeS)x: Competition between Solid Solution and Phase Separation

Low Thermal Conductivity and High Thermoelectric Performance in (GeTe)1–2x(GeSe)x(GeS)x: Competition between Solid Solution and Phase Separation
Kanishka Biswas, Manisha Samanta
GeTe and its derivatives constituting Pb-free elements have been well known as potential thermoelectric materials for the last five decades, which offer paramount technological importance. The main constraint in the way of optimizing thermoelectric performance of GeTe is the high lattice thermal conductivity (κlat). Herein, we demonstrate low κlat (∼0.7 W/m·K) and a significantly high thermoelectric figure of merit (ZT = 2.1 at 630 K) in the Sb-doped pseudoternary (GeTe)1–2x(GeSe)x(GeS)x system by two-step strategies. The (GeTe)1–2x(GeSe)x(GeS)x system provides an excellent podium to investigate competition between an entropy-driven solid solution and enthalpy-driven phase separation. In the first step, small concentrations of Se and S were substituted simultaneously in the position of Te in GeTe to reduce the κlat by phonon scattering due to mass fluctuations and point defects. When the Se/S concentration increases significantly, the system deviates from a solid solution, and phase separation of the GeS1–xSex (5–20 μm) precipitates in the GeTe1–xSex matrix occurs, which does not participate in phonon scattering. In the second stage, κlat of the optimized sample is further reduced to 0.7 W/m·K by Sb alloying and spark plasma sintering (SPS), which introduce additional phonon scattering centers such as excess solid solution point defects and grain boundaries. The low κlat in Sb-doped (GeTe)1–2x(GeSe)x(GeS)x is attributed to phonon scattering by entropically driven solid solution point defects rather than conventional endotaxial nanostructuring. As a consequence, the SPS-processed Ge0.9Sb0.1Te0.9Se0.05S0.05 sample exhibits a remarkably high ZT of 2.1 at 630 K, which is reproducible and stable over temperature cycles. Moreover, Sb-doped (GeTe)1–2x(GeSe)x(GeS)x exhibits significantly higher Vickers microhardness (mechanical stability) compared to that of pristine GeTe.

Publisher URL: http://dx.doi.org/10.1021/jacs.7b05143

DOI: 10.1021/jacs.7b05143

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.