4 years ago

Genetic Code Expansion in Zebrafish Embryos and Its Application to Optical Control of Cell Signaling

Genetic Code Expansion in Zebrafish Embryos and Its Application to Optical Control of Cell Signaling
Alexander Deiters, Michael Tsang, Subhas Samanta, James Hemphill, Jihe Liu
Site-specific incorporation of unnatural amino acids into proteins provides a powerful tool to study protein function. Here we report genetic code expansion in zebrafish embryos and its application to the optogenetic control of cell signaling. We genetically encoded four unnatural amino acids with a diverse set of functional groups, which included a photocaged lysine that was applied to the light-activation of luciferase and kinase activity. This approach enables versatile manipulation of protein function in live zebrafish embryos, a transparent and commonly used model organism to study embryonic development.

Publisher URL: http://dx.doi.org/10.1021/jacs.7b02145

DOI: 10.1021/jacs.7b02145

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.