5 years ago

Spatiotemporal Organization of Catalysts Driven by Enhanced Diffusion

Spatiotemporal Organization of Catalysts Driven by Enhanced Diffusion
C. Weistuch, S. Pressé
Recently, both microfluidic and fluorescence correlation spectroscopy experiments have revealed that diffusion coefficients of active biological catalysts (enzymes) rise proportionately to their catalytic rate. Similar effects have also been observed for active material catalysts, such as platinum nanocatalysts in hydrogen peroxide solution. While differences in diffusion coefficients have recently been cleverly exploited to spatially separate active from inactive catalysts, here we investigate the consequences of these novel findings on the spatiotemporal organization of catalysts. In particular, we show that chemical reactions—such as coupled catalytic reactions—may drive effective attraction or repulsion between catalysts which in turn drives their spatiotemporal organization. This, we argue, may have implications for internal cell signaling.

Publisher URL: http://dx.doi.org/10.1021/acs.jpcb.7b06868

DOI: 10.1021/acs.jpcb.7b06868

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.