5 years ago

qPCR analysis of bivalve larvae feeding preferences when grazing on mixed microalgal diets

Kai Liao, Runtao Zhang, Haibo Zhou, Chengxu Zhou, Jilin Xu, Xiaojun Yan, Wenbi Chen

by Kai Liao, Wenbi Chen, Runtao Zhang, Haibo Zhou, Jilin Xu, Chengxu Zhou, Xiaojun Yan

Characterization of the feeding preferences of bivalve larvae would help improving the bivalve aquaculture and hatchery by providing appropriate microalgal diets. However, inaccurate and laborious identification and counting of microalgal species have challenged the selective feeding of bivalves. In the present study, we developed a highly specific and sensitive assay using quantitative polymerase chain reaction (qPCR) to assess the selective feeding of bivalve larvae based on species-specific primers targeting to microalgal 18S rDNA sequences. The assay exhibited good specificity. The detection limits of the qPCR assay were 769, 71, 781 and 21 18S rDNA copies for Chaetoceros calcitrans, Isochrysis galbana, Platymonas helgolandica and Nannochloropsis oculata, respectively. Using such assay, we found that C. calcitrans and I. galbana were preferentially ingested, whereas N. oculata was preferentially rejected in biodeposits of four bivalve species, Tegillarca gransa, Cyclina sinensis, Scapharca subcrenata and Sinonovacula constricta. Furthermore, our growth experiments revealed that C. calcitrans and I. galbana could significantly promote the shell growth, whereas feeding of N. oculata resulted in poorer growth of four bivalve species. These data indicated that qPCR might be useful in screening of efficient and reliable microalgal species for each bivalve species, leading to improved bivalve aquaculture and hatchery.

Publisher URL: http://journals.plos.org/plosone/article

DOI: 10.1371/journal.pone.0180730

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.