3 years ago

Synthesis of Lipophilic Guanine N-9 Derivatives: Membrane Anchoring of Nucleobases Tailored to Fatty Acid Vesicles

Synthesis of Lipophilic Guanine N-9 Derivatives: Membrane Anchoring of Nucleobases Tailored to Fatty Acid Vesicles
Pierre-Alain Monnard, Sarah E. Maurer, Philipp M. G. Löffler, Kent A. Nielsen, Anders N. Albertsen, Michael C. Wamberg, Pernille L. Pedersen
Covalent or noncovalent surface functionalization of soft-matter structures is an important tool for tailoring their function and stability. Functionalized surfaces and nanoparticles have found numerous applications in drug delivery and diagnostics, and new functionalization chemistry is continuously being developed in the discipline of bottom-up systems chemistry. The association of polar functional molecules, e.g., molecular recognition agents, with soft-matter structures can be achieved by derivatization with alkyl chains, allowing noncovalent anchoring into amphiphilic membranes. We report the synthesis of five new guanine–N9 derivatives bearing alkyl chains with different attachment chemistries, exploiting a synthesis pathway that allows a flexible choice of hydrophobic anchor moiety. In this study, these guanine derivatives were functionalized with C10 chains for insertion into decanoic acid bilayer structures, in which both alkyl chain length and attachment chemistry determined their interaction with the membrane. Incubation of these guanine conjugates, as solids, with a decanoic acid vesicle suspension, showed that ether- and triazole-linked C10 anchors yielded an increased partitioning of the guanine derivative into the membranous phase compared to directly N-9-linked saturated alkyl anchors. Decanoic acid vesicle membranes could be loaded with up to 5.5 mol % guanine derivative, a 6-fold increase over previous limits. Thus, anchor chemistries exhibiting favorable interactions with a bilayer’s hydrophilic surface can significantly increase the degree of structure functionalization.

Publisher URL: http://dx.doi.org/10.1021/acs.bioconjchem.7b00228

DOI: 10.1021/acs.bioconjchem.7b00228

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.