5 years ago

Microfluidics Enabled Bottom-Up Engineering of 3D Vascularized Tumor for Drug Discovery

Microfluidics Enabled Bottom-Up Engineering of 3D Vascularized Tumor for Drug Discovery
Hai Wang, Pranay Agarwal, Mingrui Sun, Zhenguo Liu, Shuting Zhao, Jiangsheng Xu, Xiaoming He, Keith J. Gooch, Xiongbin Lu, Yi Zhao
Development of high-fidelity three-dimensional (3D) models to recapitulate the tumor microenvironment is essential for studying tumor biology and discovering anticancer drugs. Here we report a method to engineer the 3D microenvironment of human tumors, by encapsulating cancer cells in the core of microcapsules with a hydrogel shell for miniaturized 3D culture to obtain avascular microtumors first. The microtumors are then used as the building blocks for assembling with endothelial cells and other stromal cells to create macroscale 3D vascularized tumor. Cells in the engineered 3D microenvironment can yield significantly larger tumors in vivo than 2D-cultured cancer cells. Furthermore, the 3D vascularized tumors are 4.7 and 139.5 times more resistant to doxorubicin hydrochloride (a commonly used chemotherapy drug) than avascular microtumors and 2D-cultured cancer cells, respectively. Moreover, this high drug resistance of the 3D vascularized tumors can be overcome by using nanoparticle-mediated drug delivery. The high-fidelity 3D tumor model may be valuable for studying the effect of microenvironment on tumor progression, invasion, and metastasis and for developing effective therapeutic strategy to fight against cancer.

Publisher URL: http://dx.doi.org/10.1021/acsnano.7b00824

DOI: 10.1021/acsnano.7b00824

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.