3 years ago

Cell-Free Synthetic Biology Chassis for Nanocatalytic Photon-to-Hydrogen Conversion

Cell-Free Synthetic Biology Chassis for Nanocatalytic Photon-to-Hydrogen Conversion
Elena A. Rozhkova, Angela Y. Chang, Peng Wang, Valentyn Novosad, Richard D. Schaller, Vladimir V. Chupin
We report on an entirely man-made nano-bio architecture fabricated through noncovalent assembly of a cell-free expressed transmembrane proton pump and TiO2 semiconductor nanoparticles as an efficient nanophotocatalyst for H2 evolution. The system produces hydrogen at a turnover of about 240 μmol of H2 (μmol protein)−1 h–1 and 17.74 mmol of H2 (μmol protein)−1 h–1 under monochromatic green and white light, respectively, at ambient conditions, in water at neutral pH and room temperature, with methanol as a sacrificial electron donor. Robustness and flexibility of this approach allow for systemic manipulation at the nanoparticle–bio interface toward directed evolution of energy transformation materials and artificial systems.

Publisher URL: http://dx.doi.org/10.1021/acsnano.7b01142

DOI: 10.1021/acsnano.7b01142

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.