5 years ago

Dynamic DNA Origami Device for Measuring Compressive Depletion Forces

Dynamic DNA Origami Device for Measuring Compressive Depletion Forces
Carlos E. Castro, Michael W. Hudoba, Angelita Zacharias, Yi Luo, Michael G. Poirier
The ability to self-assemble nanodevices with programmed structural dynamics that can sense and respond to the local environment could enable transformative applications in fields including molecular robotics, nanomanufacturing, and nanomedicine. The responsive function of biomolecules is often driven by alterations in conformational distributions mediated by highly sensitive interactions with the local environment. Here, we mimic this approach by engineering inherent nanoscale structural dynamics (nanodynamics) into a DNA device that exhibits a distribution of conformations including two stable states separated by a transition state where the energy barrier height is on the scale of the thermal energy, kBT = 4.1 pN·nm, enabling spontaneous transitions between states. We further establish design principles to regulate the equilibrium and kinetic behavior by substituting a few DNA strand components. We use single-molecule Förster resonance energy transfer measurements to show these nanodynamic properties are sensitive to sub-piconewton depletion forces in the presence of molecular crowding agents, and the device can measure depletion forces with a resolution of ∼100 fN. We anticipate that this approach of engineering nanodynamic DNA devices will enable molecular-scale systems that sense and respond to their local environment with extremely high sensitivity.

Publisher URL: http://dx.doi.org/10.1021/acsnano.6b07097

DOI: 10.1021/acsnano.6b07097

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.