3 years ago

“Electron/Ion Sponge”-Like V-Based Polyoxometalate: Toward High-Performance Cathode for Rechargeable Sodium Ion Batteries

“Electron/Ion Sponge”-Like V-Based Polyoxometalate: Toward High-Performance Cathode for Rechargeable Sodium Ion Batteries
Bowei Zhang, Jilei Liu, Jianyi Lin, Shi Chen, Zhen Chen, Huanhuan Wang, Jin Wang, Ze Xiang Shen, Minghua Chen, Tze Chien Sum, Yizhong Huang, Xiaofeng Fan, Weimin Xuan, Bingbing Tian
One key challenge facing room temperature Na-ion batteries lies in identifying earth-abundant, environmentally friendly and safe materials that can provide efficient Na+ storage sites in Na-ion batteries. Herein, we report such a material, polyoxometalate Na2H8[MnV13O38] (NMV), with entirely different composition and structure from those cathode compounds reported before. Ex-situ XPS and FTIR analyses reveal that NMV cathode behaves like an “electron/Na-ion sponge”, with 11 electrons/Na+ acceptability per mole, which has a decisive contribution to the high capacity. The extraordinary structural features, evidenced by X-ray crystallographic analysis, of Na2H8[MnV13O38] with a flexible 2D lamellar network and 1D open channels provide diverse Na ion migration pathways, yielding good rate capability. First-principle calculations demonstrate that a super-reduced state, [MnV13O38]20−, is formed with slightly expanded size (ca. 7.5%) upon Na+ insertion compared to the original [MnV13O38]9–. This “ion sponge” feature ensures the good cycling stability. Consequently, benefiting from the combinations of “electron/ion sponge” with diverse Na+ diffusion channels, when revealed as the cathode materials for Na-ion batteries, Na2H8[MnV13O38]/G exhibits a high specific capacity (ca. 190 mA h/g at 0.1 C), associates with a good rate capability (130 mA h/g at 1 C), and a good capacity retention (81% at 0.2 C). Our results promote better understanding of the storage mechanism in polyoxometalate host, enrich the existing rechargeable SIBs cathode chemistry, and enlighten an exciting direction for exploring promising cathode materials for Na-ion batteries.

Publisher URL: http://dx.doi.org/10.1021/acsnano.7b02062

DOI: 10.1021/acsnano.7b02062

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.