3 years ago

Targeted inhibition of Gq signaling induces airway relaxation in mouse models of asthma.

Obstructive lung diseases are common causes of disability and death worldwide. A hallmark feature is aberrant activation of Gq protein-dependent signaling cascades. Currently, drugs targeting single G protein (heterotrimeric guanine nucleotide-binding protein)-coupled receptors (GPCRs) are used to reduce airway tone. However, therapeutic efficacy is often limited, because various GPCRs contribute to bronchoconstriction, and chronic exposure to receptor-activating medications results in desensitization. We therefore hypothesized that pharmacological Gq inhibition could serve as a central mechanism to achieve efficient therapeutic bronchorelaxation. We found that the compound FR900359 (FR), a membrane-permeable inhibitor of Gq, was effective in silencing Gq signaling in murine and human airway smooth muscle cells. Moreover, FR both prevented bronchoconstrictor responses and triggered sustained airway relaxation in mouse, pig, and human airway tissue ex vivo. Inhalation of FR in healthy wild-type mice resulted in high local concentrations of the compound in the lungs and prevented airway constriction without acute effects on blood pressure and heart rate. FR administration also protected against airway hyperreactivity in murine models of allergen sensitization using ovalbumin and house dust mite as allergens. Our findings establish FR as a selective Gq inhibitor when applied locally to the airways of mice in vivo and suggest that pharmacological blockade of Gq proteins may be a useful therapeutic strategy to achieve bronchorelaxation in asthmatic lung disease.

Publisher URL: http://doi.org/10.1126/scitranslmed.aag2288

DOI: 10.1126/scitranslmed.aag2288

You might also like
Never Miss Important Research

Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.