5 years ago

Mild acidosis delays neutrophil apoptosis via multiple signaling pathways and acts in concert with inflammatory mediators.

Accumulating evidence indicates development of local extracellular acidosis in inflamed tissues in response to infection and tissue injury. Activation of infiltrating neutrophils contributes to a transient decrease in pH, which, in turn, triggers innate immunity. In this study, we investigated the impact of extracellular acidosis on neutrophil apoptosis, a critical determinant of the outcome of the inflammatory response and analyzed the underlying signaling pathways. Culture of human isolated neutrophils in mildly acidotic conditions (pH 6.5-7.0) resulted in activation of NF-κB; intracellular accumulation of cAMP; and phosphorylation of Akt, ERK, and p38 MAPK; and preservation of Mcl-1 expression. Consequently, extracellular acidosis prevented disruption of mitochondrial transmembrane potential and translocation of cytochrome c and apoptosis-inducing factor from the mitochondria to cytoplasm and nuclei, respectively and inhibited caspase-3 activity. Pharmacological inhibition of ERK, PI3K, NF-κB, or PKA partially reversed survival cues by extracellular acidosis and redirected neutrophils to apoptosis. Conversely, dibutyryl cAMP (100-500 μM) delayed apoptosis of neutrophils cultured at pH 7.4. Extracellular acidosis-generated survival cues were additive to the potent prosurvival signals from bacterial DNA, LPS, modified C-reactive protein, and serum amyloid A. Acidosis increased CpG DNA uptake by neutrophils and augmented phosphorylation of ERK and Akt, leading to preservation of Mcl-1 expression. Our results identified extracellular acidosis as a survival signal for neutrophils by suppressing the constitutive apoptotic machinery and suggest that transient decreases in local pH can enhance neutrophil responses to inflammatory stimuli, thereby contributing to amplification or prolongation of the inflammatory response.

Publisher URL: http://doi.org/10.1189/jlb.3A0117-041R

DOI: 10.1189/jlb.3A0117-041R

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.