5 years ago

Potential using of infrared thermal imaging to detect volatile compounds released from decayed grapes

Wengang Zheng, Leizi Jiao, Daming Dong, Luyu Ding

by Luyu Ding, Daming Dong, Leizi Jiao, Wengang Zheng

Previous studies have demonstrated variations in volatile compound content during fruit spoilage. Infrared spectroscopy was proposed as an alternative method to discriminate the various states of decayed fruit through the makeup of their volatile compounds. Based on the infrared spectra of volatile compounds obtained from decayed grapes, this study simplified the extraction of their feature spectra and visualized their gas plumes by using a commercial infrared thermal camera equipped with a custom-made wavelength filter. As a function of volatilization gradients, accumulated gray value and imaging area were proposed as indicators for semi-quantitative analysis in a volatilization range similar to that of ethanol solutions ranging from 10% to 70%. Fresh, seriously decayed, and slightly or moderately decayed grapes were rapidly discriminated through their alcoholic volatiles by thermal images with correct classification ratings of 100%, 93.3%, and 90%, respectively.

Publisher URL: http://journals.plos.org/plosone/article

DOI: 10.1371/journal.pone.0180649

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.