5 years ago

Complex and Hierarchical 2D Assemblies via Crystallization-Driven Self-Assembly of Poly(l-lactide) Homopolymers with Charged Termini

Complex and Hierarchical 2D Assemblies via Crystallization-Driven Self-Assembly of Poly(l-lactide) Homopolymers with Charged Termini
Mitchell A. Winnik, Sam Pearce, Ming-Siao Hsiao, Ian Manners, Robert L. Harniman, Yunxiang He, Xiaoming He
Poly(l-lactide) (PLLA)-based nanoparticles have attracted much attention with respect to applications in drug delivery and nanomedicine as a result of their biocompatibility and biodegradability. Nevertheless, the ability to prepare PLLA assemblies with well-defined shape and dimensions is limited and represents a key challenge. Herein we report access to a series of monodisperse complex and hierarchical colloidally stable 2D structures based on PLLA cores using the seeded growth, “living-crystallization-driven self-assembly” method. Specifically, we describe the formation of diamond-shaped platelet micelles and concentric “patchy” block co-micelles by using seeds of the charge-terminated homopolymer PLLA24[PPh2Me]I to initiate the sequential growth of either additional PLLA24[PPh2Me]I or a crystallizable blend of the latter with the block copolymer PLLA42-b-P2VP240, respectively. The epitaxial nature of the growth processes used for the creation of the 2D block co-micelles was confirmed by selected area electron diffraction analysis. Cross-linking of the P2VP corona of the peripheral block in the 2D block co-micelles using Pt nanoparticles followed by dissolution of the interior region in good solvent for PLLA led to the formation of novel, hollow diamond-shaped assemblies. We also demonstrate that, in contrast to the aforementioned results, seeded growth of the unsymmetrical PLLA BCPs PLLA42-b-P2VP240 or PLLA20-b-PAGE80 alone from 2D platelets leads to the formation of diamond-fiber hybrid structures.

Publisher URL: http://dx.doi.org/10.1021/jacs.7b03172

DOI: 10.1021/jacs.7b03172

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.