5 years ago

Multi-shelled Hollow Metal–Organic Frameworks

Multi-shelled Hollow Metal–Organic Frameworks
Jijiang Huang, Fengwei Huo, Wenxian Liu, Junfeng Liu, Weina Zhang, Shiji Wang, Qiu Yang, Xiaoming Sun
Hollow metal–organic frameworks (MOFs) are promising materials with sophisticated structures, such as multiple shells, that cannot only enhance the properties of MOFs but also endow them with new functions. Herein, we show a rational strategy to fabricate multi-shelled hollow chromium (III) terephthalate MOFs (MIL-101) with single-crystalline shells through step-by-step crystal growth and subsequent etching processes. This strategy relies on the creation of inhomogeneous MOF crystals in which the outer layer is chemically more robust than the inner layer and can be selectively etched by acetic acid. The regulation of MOF nucleation and crystallization allows the tailoring of the cavity size and shell thickness of each layer. The resultant multi-shelled hollow MIL-101 crystals show significantly enhanced catalytic activity during styrene oxidation. The insight gained from this systematic study will aid in the rational design and synthesis of other multi-shelled hollow structures and the further expansion of their applications. Promising MOF structures: Single-crystalline multi-shelled hollow metal–organic frameworks (MSHMs) were synthesized through step-by-step crystal growth and subsequent etching processes. The cavity size and shell thickness of each layer in the MSHMs was regulated through careful nucleation and crystallization of the metal–organic frameworks. The MSHM crystals show significantly increased catalytic activity.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/anie.201701604

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.