5 years ago

Guiding the Growth of a Conductive Filament by Nanoindentation To Improve Resistive Switching

Guiding the Growth of a Conductive Filament by Nanoindentation To Improve Resistive Switching
Xianzhe Chen, Yiming Sun, Fei Zeng, Jun Yin, Feng Pan, Qin Wan, Cheng Song
Redox-based memristor devices, which are considered to have promising nonvolatile memory, mainly operate through the formation/rupture of nanoscale conductive filaments. However, the random growth of conductive filaments is an obstacle for the stability of memory devices and the cell-to-cell uniformity. Here, we investigate the guiding effect of nanoindentation on the growth of conductive filaments in resistive memory devices. The nanoindented top electrodes generate an electric field concentration and the resultant precise control of a conductive filament in two typical memory devices, Ag/SiO2/Pt and W/Ta2O5/Pt. The nanoindented cells possess a much larger ON/OFF ratio, a sharper RESET process, a higher response speed, and better cell-to-cell uniformity compared with the conventional cells. Our finding reflects that the use of large-scale nanotransfer printing might be a unique way to improve the performance of resistive random access memory.

Publisher URL: http://dx.doi.org/10.1021/acsami.7b09710

DOI: 10.1021/acsami.7b09710

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.