5 years ago

Preparation of Ice-Templated MOF–Polymer Composite Monoliths and Their Application for Wastewater Treatment with High Capacity and Easy Recycling

Preparation of Ice-Templated MOF–Polymer Composite Monoliths and Their Application for Wastewater Treatment with High Capacity and Easy Recycling
Haifei Zhang, Daniel Pun, Yonghong Yang, Xuedan Chen, Lei Zhang, Adham Ahmed, Lang Wen, Qingshan Fu
An ice-templating process was used to fabricate polymer/MOF monoliths, specifically chitosan/UiO-66, as adsorbents for water treatment. The ice-templated macropores enhanced mass transport, while the monoliths could be easily recovered from solution. This was demonstrated by the adsorption of methylchlorophenoxypropionic acid (MCPP, a herbicide compound) from dilute aqueous solution. To enhance the stability, the freeze-dried monoliths were treated with NaOH solution, solvent exchanged, and dried. The treated chitosan/UiO-66 monolith achieved an adsorption capacity of 34.33 mg g–1 (a maximum theoretic value of 334 mg g–1 by the Langmuir model), closer to the capacity (36.00 mg g–1) of the freshly prepared UiO-66 nanoparticles and much higher than that of the NaOH-washed UiO-66 nanoparticles (18.55 mg g–1), by performing the tests in 60 ppm MCPP solution. The composite monolith could be easily picked up using tweezers and used for recycling tests. Over 80% of the adsorption capacity was retained after three more cycles. The powder X-ray diffraction and N2 sorption studies suggested the crystalline structure of UiO-66 was destroyed during NaOH washing procedure. This, however, provides the potential to improve the adsorption capacity by developing methods to fabricate true polymer/MOF composites.

Publisher URL: http://dx.doi.org/10.1021/acsami.7b10872

DOI: 10.1021/acsami.7b10872

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.