5 years ago

Self-Bleaching Behaviors in Black-to-Transmissive Electrochromic Polymer Thin Films

Self-Bleaching Behaviors in Black-to-Transmissive Electrochromic Polymer Thin Films
Jiazhi He, Jianguo Mei, Liyan You
Polymer-based electrochromic smart windows are an emerging energy-saving technology. There are several technological hurdles in the development of organic electrochromics. In this article, the self-bleaching behaviors of a black electrochromic polymer (ECP-black) thin film were investigated. We found that the electrochemical break-in process led to a less dense morphology and the increased free volume facilitated ion permeation in the ECP-black thin films. The polarized interface between the polymer thin film and transparent indium-tin-oxide (ITO) electrode made charge transfer accessible, which caused the self-bleaching behaviors. Herein, we proposed two approaches to study and mitigate the self-bleaching phenomenon. First, a densely packed morphology was regenerated by increasing the cathodic polarization time under open-circuit conditions (Voff). The second involved the modification of the electrode (ITO) surface with a partial coverage of the octadecyltrichlorosilane layer. The combination of the two approaches rendered the ECP-black thin film capable of maintaining the colored state for up to 900 s. To extend the scope of our studies, self-bleaching of ECP-magenta and ECP-blue thin films were also tested and suppressed by using these two methods. Additionally, the cycling stability of the ECP-black has been improved from ∼600 cycles to up to 2300 cycles without a noticeable decay of optical contrast.

Publisher URL: http://dx.doi.org/10.1021/acsami.7b09140

DOI: 10.1021/acsami.7b09140

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.