3 years ago

Ultra-Antireflective Electrodeposited Plasmonic and PEDOT Nanocone Array Surfaces

Ultra-Antireflective Electrodeposited Plasmonic and PEDOT Nanocone Array Surfaces
Seulgi So, Kellen Kartub, Robert M. Corn, Han Wai Millie Fung, Gabriel Loget
Novel broadband ultra-antireflective surfaces were created via the electrodeposition of a nanostructured zinc oxide thin film onto conductive, light absorbing periodic nanocone arrays. Nanocone arrays of (i) fluorinated ethylene propylene (FEP) coated with a 50 nm plasmonic gold thin film and (ii) the electroactive polymer poly(3,4-ethylenedioxythiophene) (PEDOT) exhibited a very low broadband reflectivity of less than 0.1% from 475 to 800 nm at a wide range of incident angles after the electrodeposition of a nanostructured ZnO thin film onto the surface. SEM images reveal the formation of ZnO nanoflowers and nanorods on both nanocone array surfaces; these additional ZnO nanostructures enhance the coupling of the incident visible light into the absorptive gold or PEDOT nanocones to significantly reduce the reflectivity of these surfaces. The ZnO-coated nanocone array surfaces also exhibited an enhanced photoreactivity for the oxidative degradation of methylene blue, suggesting their potential to be used as a self-cleaning antireflective surface.

Publisher URL: http://dx.doi.org/10.1021/acs.jpcc.7b07503

DOI: 10.1021/acs.jpcc.7b07503

You might also like
Never Miss Important Research

Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.