5 years ago

X-ray Free Electron Laser Radiation Damage through the S-State Cycle of the Oxygen-Evolving Complex of Photosystem II

X-ray Free Electron Laser Radiation Damage through the S-State Cycle of the Oxygen-Evolving Complex of Photosystem II
Gary W. Brudvig, Victor S. Batista, M. R. Gunner, Mikhail Askerka, Muhamed Amin
The oxygen-evolving complex (OEC) catalyzes water-splitting through a reaction mechanism that cycles the OEC through the “S-state” intermediates. Understanding structure/function relationsships of the S-states is crucial for elucidating the water-oxidation mechanism. Serial femtosecond X-ray crystallography has been used to obtain radiation damage-free structures. However, it remains to be established whether “diffraction-before-destruction” is actually accomplished or if significant changes are produced by the high-intensity X-ray pulses during the femtosecond scattering measurement. Here, we use ab initio molecular dynamics simulations to estimate the extent of structural changes induced on the femtosecond time scale. We found that the radiation damage is dependent on the bonding and charge of each atom in the OEC, in a manner that may provide lessons for XFEL studies of other metalloproteins. The maximum displacement of Mn and oxygen centers is 0.25 and 0.39 Å, respectively, during the 50 fs pulse, which is significantly smaller than the uncertainty given the 1.9 Å resolution of the current PSII crystal structures. However, these structural changes might be detectable when comparing isomorphous Fourier differences of electron density maps of the different S-states. One conclusion is that pulses shorter than 15 fs should be used to avoid significant radiation damage.

Publisher URL: http://dx.doi.org/10.1021/acs.jpcb.7b08371

DOI: 10.1021/acs.jpcb.7b08371

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.