5 years ago

Eco-Friendly SnTe Thermoelectric Materials: Progress and Future Challenges

Eco-Friendly SnTe Thermoelectric Materials: Progress and Future Challenges
Zhi-Gang Chen, Raza Moshwan, Jin Zou, Lei Yang
As a key type of emerging thermoelectric material, tin telluride (SnTe) has received extensive attention because of its low toxicity and eco-friendly nature. The recent trend shows that band engineering and nanostructuring can enhance thermoelectric performance of SnTe as intermediate temperature (400–800 K) thermoelectrics, which provides an alternative for toxic PbTe with the same operational temperature. This review highlights the key strategies to enhance the thermoelectric performance of SnTe materials through band engineering, carrier concentration optimization, synergistic engineering, and structure design. A fundamental analysis elucidates the underpinnings for the property improvement. This comprehensive review will boost the relevant research with a view to work on further performance enhancement of SnTe materials. SnTe qualifies as an eco-friendly alternative to medium temperature thermoelectric PbTe by showing robust potential as high-performance thermoelectrics via effective strategies through band engineering, carrier concentration optimization, synergistic engineering, and structure design.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/adfm.201703278

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.