3 years ago

Regioselectivity of the OH Radical Addition to Uracil in Nucleic Acids. A Theoretical Approach Based on QM/MM Simulations

Regioselectivity of the OH Radical Addition to Uracil in Nucleic Acids. A Theoretical Approach Based on QM/MM Simulations
Daniel Roca-Sanjuán, Iñaki Tuñón, Juan Aranda, Antonio Francés-Monerris
Oxidation of nucleic acids is ubiquitous in living beings under metabolic impairments and/or exposed to external agents such as radiation, pollutants, or drugs, playing a central role in the development of many diseases mediated by DNA/RNA degeneration. Great efforts have been devoted to unveil the molecular mechanisms behind the OH radical additions to the double bonds of nucleobases; however, the specific role of the biological environment remains relatively unexplored. The present contribution tackles the study of the OH radical addition to uracil from the gas phase to a full RNA macromolecule by means of quantum-chemistry methods combined with molecular dynamics simulations. It is shown that, in addition to the intrinsic reactivity of each position driven by the electronic effects, the presence of bridge water molecules intercalated into the RNA structure favors the addition to the C5 position of uracil in biological conditions. The results also suggest that diffusion of the OH radical does not play a relevant role in the regioselectivity of the reaction, which is mainly controlled at the chemical stage of the addition process.

Publisher URL: http://dx.doi.org/10.1021/acs.jctc.7b00610

DOI: 10.1021/acs.jctc.7b00610

You might also like
Never Miss Important Research

Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.