5 years ago

Steroid Hormone Ecdysone Signaling Specifies Mushroom Body Neuron Sequential Fate via Chinmo

Steroid Hormone Ecdysone Signaling Specifies Mushroom Body Neuron Sequential Fate via Chinmo
Giovanni Marchetti, Gaia Tavosanis


The functional variety in neuronal composition of an adult brain is established during development. Recent studies proposed that interactions between genetic intrinsic programs and external cues are necessary to generate proper neural diversity [1]. However, the molecular mechanisms underlying this developmental process are still poorly understood. Three main subtypes of Drosophila mushroom body (MB) neurons are sequentially generated during development and provide a good example of developmental neural plasticity [2]. Our present data propose that the environmentally controlled steroid hormone ecdysone functions as a regulator of early-born MB neuron fate during larval-pupal transition. We found that the BTB-zinc finger factor Chinmo acts upstream of ecdysone signaling to promote a neuronal fate switch. Indeed, Chinmo regulates the expression of the ecdysone receptor B1 isoform to mediate the production of γ and α′β′ MB neurons. In addition, we provide genetic evidence for a regulatory negative feedback loop driving the α′β′ to αβ MB neuron transition in which ecdysone signaling in turn controls microRNA let-7 depression of Chinmo expression. Thus, our results uncover a novel interaction in the MB neural specification pathway for temporal control of neuronal identity by interplay between an extrinsic hormonal signal and an intrinsic transcription factor cascade.

Publisher URL: http://www.cell.com/current-biology/fulltext/S0960-9822(17)31075-8

DOI: 10.1016/j.cub.2017.08.037

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.