5 years ago

Dynamically Active Compartments Coupled by a Stochastically Gated Gap Junction

Paul C. Bressloff, Sean D. Lawley


We analyze a one-dimensional PDE-ODE system representing the diffusion of signaling molecules between two cells coupled by a stochastically gated gap junction. We assume that signaling molecules diffuse within the cytoplasm of each cell and then either bind to some active region of the cell’s membrane (treated as a well-mixed compartment) or pass through the gap junction to the interior of the other cell. We treat the gap junction as a randomly fluctuating gate that switches between an open and a closed state according to a two-state Markov process. This means that the resulting PDE-ODE is stochastic due to the presence of a randomly switching boundary in the interior of the domain. It is assumed that each membrane compartment acts as a conditional oscillator, that is, it sits below a supercritical Hopf bifurcation. In the ungated case (gap junction always open), the system supports diffusion-induced oscillations, in which the concentration of signaling molecules within the two compartments is either in-phase or anti-phase. The presence of a reflection symmetry (for identical cells) means that the stochastic gate only affects the existence of anti-phase oscillations. In particular, there exist parameter choices where the gated system supports oscillations, but the ungated system does not, and vice versa. The existence of oscillations is investigated by solving a spectral problem obtained by averaging over realizations of the stochastic gate.

Publisher URL: https://link.springer.com/article/10.1007/s00332-017-9374-5

DOI: 10.1007/s00332-017-9374-5

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.