5 years ago

Differential Depth Sensing Reduces Cancer Cell Proliferation via Rho-Rac-Regulated Invadopodia

Differential Depth Sensing Reduces Cancer Cell Proliferation via Rho-Rac-Regulated Invadopodia
Chwee Teck Lim, Catherine Qiurong Pan, Parthiv Kant Chaudhuri, Boon Chuan Low
Bone, which is composed of a porous matrix, is one of the principal secondary locations for cancer. However, little is known about the effect of this porous microenvironment in regulating cancer cell proliferation. Here, we examine how the depth of the pores can transduce a mechanical signal and reduce the proliferation of noncancer breast epithelial cells (MCF-10A) and malignant breast cancer cells (MDA-MB-231 and MCF-7) using micrometer-scale topographic features. Interestingly, cells extend actin-rich protrusions, such as invadopodia, to sense the depth of the matrix pore and activate actomyosin contractility to decrease MCF-10A proliferation. However, in MDA-MB-231, depth sensing inactivates Rho-Rac-regulated actomyosin contractility and phospho-ERK signaling. Inhibiting contractility on this porous matrix using blebbistatin further reduces MDA-MB-231 proliferation. Our findings support the notion of mechanically induced dormancy through depth sensing, where invadopodia-mediated depth sensing can inhibit the proliferation of noncancer and malignant breast cancer cells through differential regulation of actomyosin contractility.

Publisher URL: http://dx.doi.org/10.1021/acsnano.7b03452

DOI: 10.1021/acsnano.7b03452

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.