5 years ago

Oxidation-sensitive polymersomes as vaccine nanocarriers enhance humoral responses against Lassa virus envelope glycoprotein

Lassa virus (LASV) causes severe hemorrhagic fever with high mortality, yet no vaccine currently exists. Antibodies targeting viral attachment proteins are crucial for protection against many viral infections. However, the envelope glycoprotein (GP)−1 of LASV elicits weak antibody responses due to extensive glycan shielding. Here, we explored a novel vaccine strategy to enhance humoral immunity against LASV GP1. Using structural information, we designed a recombinant GP1 immunogen, and then encapsulated it into oxidation-sensitive polymersomes (PS) as nanocarriers that promote intracellular MHCII loading. Mice immunized with adjuvanted PS (LASV GP1) showed superior humoral responses than free LASV GP1, including antibodies with higher binding affinity to virion GP1, increased levels of polyfunctional anti-viral CD4 T cells, and IgG-secreting B cells. PS (LASV GP1) elicited a more diverse epitope repertoire of anti-viral IgG. Together, these data demonstrate the potential of our nanocarrier vaccine platform for generating virus-specific antibodies against weakly immunogenic viral antigens.

Publisher URL: www.sciencedirect.com/science

DOI: S0042682217303227

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.