5 years ago

A mechanism for cancer-associated inactivation of NQO1 due to P187S and its reactivation by the consensus mutation H80R

A mechanism for cancer-associated inactivation of NQO1 due to P187S and its reactivation by the consensus mutation H80R
Bertrand Morel, Encarnación Medina-Carmona, Inés G. Muñoz, Angel L. Pey
The cancer-associated P187S polymorphism in the NAD(P)H:quinone oxidoreductase 1 (NQO1) abolishes enzyme activity by strongly reducing FAD binding affinity. A single mammalian consensus mutation (H80R) protects P187S from inactivation. To provide mechanistic insight into these effects, we report here a detailed structural and thermodynamic characterization of FAD binding to these NQO1 variants. Our results show that H80R causes a population shift in the conformational ensemble of apo-P187S, remodelling the structure and dynamics of the FAD-binding site and reducing the energetic penalization arising from the equilibrium between apo- and holo-states. Our analyses illustrate how single amino acid changes can profoundly affect structural and mechanistic features of protein functional traits, with implications for our understanding of protein evolution and human disease.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/1873-3468.12772

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.