4 years ago

Taking Advantage of Disorder: Small-Molecule Organic Glasses for Radiation Detection and Particle Discrimination

Taking Advantage of Disorder: Small-Molecule Organic Glasses for Radiation Detection and Particle Discrimination
Peter Marleau, Patrick L. Feng, Ryan A. Zarkesh, Joseph S. Carlson
A series of fluorescent silyl-fluorene molecules were synthesized and studied with respect to their photophysical properties and response toward ionizing neutron and gamma-ray radiation. Optically transparent and stable organic glasses were prepared from these materials using a bulk melt-casting procedure. The prepared organic glass monoliths provided fluorescence quantum yields and radiation detection properties exceeding the highest-performing benchmark materials such as solution-grown trans-stilbene crystals. Co-melts based on blends of two different glass-forming compounds were prepared with the goal of enhancing the stability of the amorphous state. Accelerated aging experiments on co-melt mixtures ranging from 0% to 100% of each component indicated improved resistance to recrystallization in the glass blends, able to remain fully amorphous for >1 month at 60 °C. Secondary dopants comprising singlet fluorophores or iridium organometallic compounds provided further improved detection efficiency, as evaluated by light yield and neutron/gamma particle discrimination measurements. Optimized singlet and triplet doping levels were determined to be 0.05 wt % 1,4-bis(2-methylstyryl)benzene singlet fluorophore and 0.28 wt % Ir3+, respectively.

Publisher URL: http://dx.doi.org/10.1021/jacs.7b03989

DOI: 10.1021/jacs.7b03989

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.